If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5d^2+19d+16=0
a = 5; b = 19; c = +16;
Δ = b2-4ac
Δ = 192-4·5·16
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{41}}{2*5}=\frac{-19-\sqrt{41}}{10} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{41}}{2*5}=\frac{-19+\sqrt{41}}{10} $
| -3=-7s+4+7s | | -18=-12n | | 6=3(4+8b) | | 4x+5+3x-2=0 | | x÷3-8=12 | | 7-8h=10+9(5-4h) | | 7x+2x-8=26 | | 72+8a=8(a+9) | | 2p=p-4-9p | | -d^2-12d+4=-6d^2 | | 7x-3x^2=-40 | | 5(-3x-6)+6x=-39 | | 6k^2-9=0 | | (4x+6)(2x+8)=600 | | 61=2x-55 | | H=5+31t-16t2 | | 1.5=0.0001x^2-0.0283x+2.229 | | 7.5*x=3 | | 4y+5+3y-2-y= | | -10=4x+2(x-2) | | x=47-6 | | 4p-39=3p-11 | | 1,14-y/3125=-0,19875+(0,50/8000)y | | 5/9x=8+1/9x | | 3(y+2)+6y=15 | | 48x^2-26x-35=0 | | 1,34=y/3125+(0.5/8000)y | | 3s^2+9s-1=0 | | 36=3x-18 | | 2x+4=-(7+) | | 3(x-2)=-x+8 | | Y=900x+300 |